在SPSS中,如果分析多个因素对某一结果的影响程度应该用什么分析?
分析多个因素对某一结果的影响程度应该用数据分析。主要的方式如下:分析多个因素对某一结果的影响程度主要分为三步:第一步是整理数据,首先定义变量,这个是比较重要的一步,但难度不大。第二步:分析 由于你要分析农民收入和其他因素之间的关系。所以确定农民收入为因变量,而其他为自变量。通过analyze下面的regression来完成。即把农民收入选进因变量,其他(除年份和总计)作为自变量分析。当然里面还有像statistics等这些功能项,你作为默认就行了。 第三步:解释模型。认定你的模型做的好不好要看检验的结果,这里看R值。如果R接近1,则说明模型和实际拟和的效果比较好。你的模型R值达到了0.9多,说明效果非常不错。SPSS中做Logistic回归的操作步骤:分析>回归>二元Logistic回归,选择因变量和自变量(协变量)扩展资料:数值型变量(metric variable)是说明事物数字特征的一个名称,其取值是数值型数据。如“产品产量”、“商品销售额”、“零件尺寸”、“年龄”、“时间”等都是数值型变量,这些变量可以取不同的数值。数值型变量根据其取值的不同,又可以分为离散型变量和连续型变量。数据形式在计算机中的表示主要有两大类:数值型变量和非数值型变量(如,字符、汉字等)。数值型变量指,被人为定义的数字(如整数、小数、有理数等)在计算机中的表示。这种被定义的数据形式可直接载入内存或寄存器进行加、减、乘、除的运算。一般不经过数据类型的转换,所以运算速度快。具有计算意义。另一种非数值型的数据,如字符型数据(如‘A’,‘B’,‘C‘等),是不可直接运算的字符在计算机中的存在形式。具有信息存储的意义。在计算机中可识别的字符,一般都对应有一个ASCII码,ASCII码为数值型的数据。ASII码值的改变,对应的字符也会改变。所以,非数值型的数据,本质上也是数值型的数据。为了接近人的思维习惯,方便程序的编写,计算机高级语言,划分了数据的类型:数值型数据有:整型 单精度型 双精度型。非数值类型数据有:字符型 或 布尔型 或者 字符串型。参考资料来源:百度百科:数值型变量
用什么方法分析多个因素对不同样本之间影响程度的大小?
因素分析法又称连环置换法,可以用来分析各种因素对成本的影响程度。
在进行分析时,假定众多因素中的一个因素发生了变化,而其他因素则不变,然后逐个替换,分别比较起计算结果,以确定各个因素的变化对成本的影响程度。
因素分析法的计算步骤如下:1)确定分析对象,计算实际与目标数的差异。
2)确定该指标是有哪几个因素构成的,并按其相互关系排序(排序原则:先实物量,后价值量;
先绝对值,后相对值)3)以目标数为基础,将各因素的目标数相乘,作为分析替代的基数。
4)将各个因素的实际数按照已确定的排列顺序进行替换计算,并将替换后的实际数保留下来。
5)将每次替换计算所得的结果,与前一次的计算结果相比较,两者的差异即为该因素对成本的影响程度。
6)各个因素的影响程度之和,应与分析对象的总差异相等。