直角三角形斜边上的中线等于斜边的一半

时间:2023-06-19 14:34:25编辑:奇事君

新人教版数学上册教案【5篇】

数学的课件很有意义的。现代诗也叫“白话诗”,最早可追源到清末,是诗歌的一种,与古诗相比而言,虽都为感于物而作,但一般不拘格式和韵律。下面小编给大家带来关于新人教版数学上册教案,希望会对大家的工作与学习有所帮助。

新人教版数学上册教案(篇1)

Ⅰ、平行四边形

(1)平行四边形性质

1)平行四边形的定义:有两组对边分别平行的四边形叫做平行四边形。

2)平行四边形的性质(包括边、角、对角线三方面):

边:①平行四边形的两组对边分别平行;

②平行四边形的两组对边分别相等;

角:③平行四边形的两组对角分别相等;

对角线:④平行四边形的对角线互相平分。

【补充】平行四边形的邻角互补;平行四边形是中心对称图形,对称中心是对角线的交点。

(2)平行四边形判定

1)平行四边形的判定(包括边、角、对角线三方面):

边:①两组对边分别平行的四边形是平行四边形;

②两组对边分别相等的四边形是平行四边形;

③一组对边平行且相等的四边形是平行四边形;

角:④两组对角分别相等的四边形是平行四边形;

对角线:⑤对角线互相平分的四边形是平行四边形。

2)三角形中位线:连接三角形两边中点的线段叫做三角形的中位线。

3)三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半。

4)平行线间的距离:

两条平行线中,一条直线上的任意一点到另一条直线的.距离,叫做这两条平行线间的距离。两条平行线间的距离处处相等。

Ⅱ、矩形

(1)矩形的性质

1)矩形的定义:有一个角是直角的平行四边形叫做矩形。

2)矩形的性质:

①矩形具有平行四边形的所有性质;

②矩形的四个角都是直角;

③矩形的对角线相等;

④矩形既是轴对称图形,又是中心对称图形,有两条对称轴,对称中心是对角线的交点。

(2)矩形的判定

1)矩形的判定:

①有一个角是直角的平行四边形是矩形;

②对角线相等的平行四边形是矩形;

③有三个角是直角的四边形是矩形。

2)证明一个四边形是矩形的步骤:

方法一:先证明该四边形是平行四边形,再证一角为直角或对角线相等;

方法二:若一个四边形中的直角较多,则可证三个角为直角。

3)直角三角形斜边中线定理:(如右图)

直角三角形斜边上的中线等于斜边的一半。

Ⅲ、菱形

(1)菱形的性质

1)菱形的定义:有一组邻边相等的平行四边形叫做菱形。

2)菱形的性质:

①菱形具有平行四边形的所有性质;

②菱形的四条边都相等;

③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;

④菱形既是轴对称图形,又是中心对称图形,有两条对称轴,对称中心是对角线交点。

3)菱形的面积公式:

菱形的两条对角线的长分别为,则

(2)菱形的判定

1)菱形的判定:

①有一组邻边相等的平行四边形是菱形;

②对角线互相垂直的平行四边形是菱形;

③四条边都相等的四边形是菱形。

2)证明一个四边形是菱形的步骤:

方法一:先证明它是一个平行四边形,然后证明“一组邻边相等”或“对角线互相垂直”;

方法二:直接证明“四条边相等”。

Ⅳ、正方形

(1)正方形的性质

1)正方形的定义:有一组邻边相等且有一个角是直角的平行四边形叫做正方形。

2)正方形的性质:

正方形具有平行四边形、矩形、菱形的所有性质,即①正方形的四条边都相等;②四个角都是直角;③对角线互相垂直平分且相等,并且每条对角线平分一组对角。

3)正方形既是轴对称图形,又是中心对称图形,它有四条对称轴,对角线的交点是对称中心。

(2)正方形的判定

正方形的判定:

①有一组邻边相等且有一个角是直角的平行四边形是正方形;

②有一组邻边相等的矩形是正方形;

③对角线互相垂直的矩形是正方形;

④有一个角是直角的菱形是正方形;

⑤对角线相等的菱形是正方形;

⑥对角线互相垂直平分且相等的四边形是正方形。

新人教版数学上册教案(篇2)

位置与坐标

1、确定位置

在平面内,确定物体的位置一般需要两个数据。

2、平面直角坐标系及有关概念

①平面直角坐标系

在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

②坐标轴和象限

为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。

③点的坐标的概念

对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。

点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,(a,b)和(b,a)是两个不同点的坐标。

平面内点的与有序实数对是一一对应的.。

④不同位置的点的坐标的特征

a、各象限内点的坐标的特征

点P(x,y)在第一象限→x>0,y>0

点P(x,y)在第二象限→x<0,y>0

点P(x,y)在第三象限→x<0,y<0

点P(x,y)在第四象限→x>0,y<0

b、坐标轴上的点的特征

点P(x,y)在x轴上→y=0,x为任意实数

点P(x,y)在y轴上→x=0,y为任意实数

点P(x,y)既在x轴上,又在y轴上→x,y同时为零,即点P坐标为(0,0)即原点

c、两条坐标轴夹角平分线上点的坐标的特征

点P(x,y)在第一、三象限夹角平分线(直线y=x)上→x与y相等

点P(x,y)在第二、四象限夹角平分线上→x与y互为相反数

d、和坐标轴平行的直线上点的坐标的特征

位于平行于x轴的直线上的各点的纵坐标相同。

位于平行于y轴的直线上的各点的横坐标相同。

e、关于x轴、y轴或原点对称的点的坐标的特征

点P与点p’关于x轴对称横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P’(x,-y)

点P与点p’关于y轴对称纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P’(-x,y)

点P与点p’关于原点对称,横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P’(-x,-y)

f、点到坐标轴及原点的距离

点P(x,y)到坐标轴及原点的距离:

点P(x,y)到x轴的距离等于∣y∣

点P(x,y)到y轴的距离等于∣x∣

点P(x,y)到原点的距离等于√x2+y2

新人教版数学上册教案(篇3)

1.多边形的分类:

2.平行四边形、菱形、矩形、正方形、等腰梯形的定义、性质、判别:

(1)平行四边形:两组对边分别平行的四边形叫做平行四边形。平行四边形的对边平行且相等;对角相等,邻角互补;对角线互相平分。两条对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。

(2)菱形:一组邻边相等的平行四边形叫做菱形。菱形的四条边都相等;对角线互相垂直平分,每一条对角线平分一组对角。四条边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;一组邻边相等的平行四边形是菱形;对角线互相平分且垂直的四边形是菱形。菱形的面积等于两条对角线乘积的一半(面积计算,即S菱形=L1.L2/2)。

(3)矩形:有一个内角是直角的平行四边形叫做矩形。矩形的对角线相等;四个角都是直角。对角线相等的平行四边形是矩形;有一个角是直角的平行四边形是矩形。直角三角形斜边上的中线等于斜边长的一半;在直角三角形中30°所对的直角边是斜边的一半。

(4)正方形:一组邻边相等的矩形叫做正方形。正方形具有平行四边形、菱形、矩形的一切性质。

(5)等腰梯形同一底上的两个内角相等,对角线相等。同一底上的两个内角相等的梯形是等腰梯形;对角线相等的梯形是等腰梯形;对角互补的梯形是等腰梯形。

(6)三角形中位线:连接三角形相连两边重点的线段。性质:平行且等于第三边的一半

3.多边形的内角和公式:(n-2).180°;多边形的外角和都等于。

4.中心对称图形:在平面内,一个图形绕某个点旋转,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形。

新人教版数学上册教案(篇4)

实数

1、实数的概念及分类

①实数的分类

②无理数

无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:

开方开不尽的数,如√7,√3,√2等;

有特定意义的数,如圆周率π,或化简后含有π的数,如π/+8等;有特定结构的数,如0.1010010001…等;

某些三角函数值,如sin60°等2、实数的倒数、相反数和绝对值

①相反数

实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。

②绝对值

在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。|a|≥0。0的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。

③倒数

如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。0没有倒数。

④数轴

规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

⑤估算

3、平方根、算数平方根和立方根

①算术平方根

一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。特别地,0的算术平方根是0。

性质:正数和零的算术平方根都只有一个,0的算术平方根是0。

②平方根

一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。

性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

开平方求一个数a的平方根的运算,叫做开平方。注意√a的双重非负性:√a≥0;a≥0③立方根

一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(或三次方根)。

表示方法:记作3√a

性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:-3√a=3√-a,这说明三次根号内的负号可以移到根号外面。

4、实数大小的比较

①实数比较大小

正数大于零,负数小于零,正数大于一切负数;

数轴上的两个点所表示的数,右边的总比左边的大;

两个负数,绝对值大的反而小。

②实数大小比较的几种常用方法

数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

求差比较:设a、b是实数

a-b>0a>b;

a-b=0a=b;

a-b<0a

求商比较法:设a、b是两正实数,

绝对值比较法:设a、b是两负实数,则∣a∣>∣b∣a

平方法:设a、b是两负实数,则a2>b2a

5、算术平方根有关计算(二次根式)

①含有二次根号“√”;被开方数a必须是非负数。

②性质:

③运算结果若含有“√”形式,必须满足:

被开方数的因数是整数,因式是整式

被开方数中不含能开得尽方的因数或因式

6、实数的运算

①六种运算:加、减、乘、除、乘方、开方。

②实数的运算顺序

先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

③运算律

加法交换律a+b=b+a

加法结合律(a+b)+c=a+(b+c)

乘法交换律ab=ba

乘法结合律(ab)c=a(bc)

乘法对加法的分配律a(b+c)=ab+ac

新人教版数学上册教案(篇5)

一、复习内容:

第一章:全等三角形

第二章:轴对称

第三章:勾股定理

二、复习目标:

八年级数学本学期知识点多,复习时间又比较短,只有一周多的时间。根据实际情况,应该完成如下目标:

(一)、整理半学期学过的知识与方法:

(二)、在自己经历过的解决问题活动中,选择一个有挑战问题性的问题,写下解决它的过程:包括遇到的困难、克服困难的方法与过程及所获得的体会,并选择这个问题的原因。

(三)、通过半学期的数学学习,让同学们总结自己有哪些收获;有哪些需要改进的地方。

三、复习方法:

1、强化训练,这个学期计算类和证明类的题目较多,在复习中要加强这方面的训练,重点是解题方法的正确选择同时使学生养成检查计算结果的习惯。还有几何证明题,要通过针对性练习力争达到少失分,达到证明简练又严谨的效果。

2、加强管理严格要求,根据每个学生自身情况、学习水平严格要求,对应知应会的内容要反复讲解、练习,必须做到学一点会一点,对接受能力差的学生课后要加强辅导,及时纠正出现的错误,平时多小测多检查。对能力较强的学生要引导他们多做课外习题,适当提高做题难度。

3、加强证明题的训练,通过近阶段的学习,我发现学生对证明题掌握不牢,不会找合适的分析方法,部分学生看不懂题意,没有思路。在今后的复习中我准备拿出一定的时间来专项练习证明题,引导学生如何弄懂题意、怎样分析、怎样写证明过程。力争让学生把各种类型题做全并抓住其特点。

4、加强成绩不理想学生的辅导,制定详细的复习计划,对他们要多表扬多鼓励,调动他们学习的积极性,利用课余时间对他们进行辅导,辅导时要有耐心,要心平气和,对不会的知识要多讲几遍,不怕麻烦,直至弄懂弄会。

四、复习阶段采取的措施:

1.精心备课上课,针对班级学生出现的错题及所涉及到的重点问题认真挑选试题。

2.对于复习阶段作业的布置,少而精,有针对性,并且很抓订正及改错。

3.在试题的选择上作到面面俱到,重点难点突出,不重不漏。

4.面向全体学生。由于学生在知识、技能方面的发展和兴趣、特长等不尽相同,所以要因材施教。在组织教学时,应从大多数学生的实际出发,并兼顾学习有困难的和学有余力的学生。对学习有困难的学生,要特别予以关心,及时采取有效措施,激发他们学习数学的兴趣,指导他们改进学习方法。减缓他们学习中的坡度,使他们经过努力,能够达到大纲中规定的基本要求。对学有余力的学生,要通过讲授选学内容和组织课外活动等多种形式,满足他们的学习愿望,发展他们的数学才能。

5.重视改进教学方法,坚持启发式,反对注入式。教师在课前先布置学生预习,同时要指导学生预习,提出预习要求,并布置与课本内容相关、难度适中的尝试题材由学生课前完成,教学中教师应帮助学生梳理学习的知识,指出重点和易错点,解答学生复习时遇到的问题,使学生在学习中体会成功,调动学习积极性。

6.改革作业结构减轻学生负担。将学生按学习能力分成几个层次,分别布置难、中、易三档作业,使每类学生都能在原有基础上提高。

上一篇:雷锋活动

下一篇:承诺函模板