数值计算原理

时间:2024-08-01 07:10:41编辑:奇事君

数值计算方法介绍

  1、数值计算(numerical analysis),为数学的一个分支,是研究分析用计算机求解数学计算问题的数值计算方法及其理论的学科。它以数字计算机求解数学问题的理论和方法为研究对象,为计算数学的主体部分。

  2、数值计算的目的是设计及分析一些计算的方式,可针对一些问题得到近似但够精确的结果。

  3、在数值计算中用到迭代法的情形会比直接法要多。例如像牛顿法、二分法、雅可比法、广义最小残量方法(GMRES)及共轭梯度法等等。在计算矩阵代数中,大型的问题一般会需要用迭代法来求解。


数值计算方法

数值计算的六大方法有限元法有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数 形式,便构成不同的有限元方法。 多重网格方法多重网格方法通过在疏密不同的网格层上进行迭代,以平滑不同频率的误差分量.具有收敛速度快,精度高等优点.有限差分方法有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。有限体积法有限体积法(Finite Volume Method)又称为控制体积法。其基本思路是:将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有一个控制体积;将待解的微分方程对每一个控制体积积分,便得出一组离散方程近似求解的误差估计方法近似求解的误差估计方法共有三大类:单元余量法,通量投射法及外推法。多尺度计算方法近年来发展的多尺度计算方法包括均匀化方法、非均匀化多尺度方法、以及小波数值均匀化方法、多尺度有限体积法、多尺度有限元法等。

上一篇:圣诞音乐

下一篇:加州大学圣芭芭拉