五年级数学下

时间:2024-06-15 05:36:20编辑:奇事君

五年级数学重难点归纳有哪些?

五年级数学重难点归纳如下:1、小数乘整数:意义——求几个相同加数的和的简便运算。计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。2、小数乘小数:意义——就是求这个数的几分之几是多少。计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。规律: 一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小。3、求近似数的方法一般有三种: 四舍五入法;进一法;去尾法。4、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。5、小数四则运算顺序跟整数是一样的。6、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。7、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。8、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。9、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的'小数除法”的法则进行计算。

五年级下册数学必背知识点有哪些?

五年级下册数学必背知识点有如下:一、长方形的周长=(长+宽)×2 ,C=(a+b)×2。二、正方形的周长=边长×4, C=4a。三、长方形的面积=长×宽 ,S=ab。四、正方形的面积=边长×边长 ,S=a.a= a^2。五、三角形的面积=底×高÷2 ,S=ah÷2。六、平行四边形的面积=底×高, S=ah。七、梯形的面积=(上底+下底)×高÷2, S=(a+b)h÷2。八、圆的周长=圆周率×直径=圆周率×半径×2, c=πd =2πr。九、圆的面积=圆周率×半径×半径 πr ^2。

五年级下册数学公式大全

小学数学公式大全:

和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6、加数+加数=和 和-一个加数=另一个加数
7、被减数-减数=差 被减数-差=减数 差+减数=被减数
8、因数×因数=积 积÷一个因数=另一个因数
9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1、正方形 (C:周长 S:面积 a:边长)
周长=边长×4 C=4a
面积=边长×边长 S=a×a
2、正方体 (V:体积 a:棱长 )
表面积=棱长×棱长×6 S表=a×a×6
体积=棱长×棱长×棱长 V=a×a×a
3、长方形( C:周长 S:面积 a:边长 )
周长=(长+宽)×2 C=2(a+b)
面积=长×宽 S=ab
4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高)
(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
(2)体积=长×宽×高 V=abh
5、三角形 (s:面积 a:底 h:高)
面积=底×高÷2 s=ah÷2
三角形高=面积 ×2÷底 三角形底=面积 ×2÷高
6、平行四边形 (s:面积 a:底 h:高)
面积=底×高 s=ah
7、梯形 (s:面积 a:上底 b:下底 h:高)
面积=(上底+下底)×高÷2 s=(a+b)× h÷2
8、圆形 (S:面积 C:周长 л d=直径 r=半径)
(1)周长=直径×л=2×л×半径 C=лd=2лr
(2)面积=半径×半径×л
9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长)
(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2
(3)体积=底面积×高 (4)体积=侧面积÷2×半径
10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径)
体积=底面积×高÷3
11、总数÷总份数=平均数
12、和差问题的公式
(和+差)÷2=大数 (和-差)÷2=小数
13、和倍问题
和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)
14、差倍问题
差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)
15、相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
16、浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
17、利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
常用单位换算
长度单位换算
1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米
面积单位换算
1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米
1平方分米=100平方厘米 1平方厘米=100平方毫米
体(容)积单位换算
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升
1立方厘米=1毫升 1立方米=1000升
重量单位换算
1吨=1000 千克 1千克=1000克 1千克=1公斤
人民币单位换算
1元=10角 1角=10分 1元=100分
时间单位换算
1世纪=100年 1年=12月 大月(31天)有:1 8 月 小月(30天)的有:4 9 月
平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时
1时=60分 1分=60秒 1时=3600秒


五年级人教版数学下册的重点有哪些

五年级下册数学知识要点:第一单元:图形的变换 1. 轴对称图形:一个图形沿一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形.这条直线叫做它的对称轴. 2. 轴对称图形的特征:1、对称点到对称轴的距离相等;2、对应点连线与对称轴互相垂直. 3. 旋转:图形或物体绕着一个点或一条轴运动的现象叫做旋转. 第二单元:因数与倍数 1. 因数和倍数:在整数乘法里,如果a×b=c,那么a和b是c的因数,c是a和b的倍数. 2. 为了方便,在研究因数和倍数的时候,我们所说的数指的是整数(一般不包括0).但是0也是整数. 3. 一个数的最小因数是1,最大因数是它本身.一个数的因数的个数是有限的. 4. 一个数的最小倍数是它本身,没有最大的倍数. 一个数的倍数的个数是无限的. 5. 个位上是0、2、4、6、8的数都是2的倍数.个位上是0、5的数都是5的倍数.一个数,每个数位上的数的和是3的倍数,这个数就是3的倍数. 6. 自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数. 7. 最小的奇数是1,最小的偶数是0.最小的质数是2,最小的合数是4. 8. 四则运算中的奇偶规律: 奇数+奇数=偶数 奇数-奇数=偶数 奇数×奇数=奇数 偶数+偶数=偶数 偶数-偶数=偶数 偶数×偶数=偶数 奇数+偶数=奇数 奇数-偶数=奇数 奇数×偶数=偶数 偶数-奇数=奇数 9. 一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数);如果除了1和它本身还有别的因数,这样的数叫做合数. 10. 1既不是质数,也不是合数. 11. 自然数按照因数的个数多少,可以分为1、质数、合数;按是否是2的倍数,可以分为奇数、偶数. 12. 100以内的质数表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97. 第三单元:长方体和正方体 1. 正方体也叫立方体. 2. 长方体的特征是:①长方体有6个面;②每个面都是长方形(特殊情况下有两个相对的面是正方形);③相对的面完全相同;④有12条棱;⑤相对的棱长度相等;⑥有8个顶点. 3. 相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高. 4. 正方体可以看成是长、宽、高都相等的长方体.正方体是特殊的长方体. 5. 正方体的特征是:①正方体有6个面;②每个面都是正方形;③所有的面都完全相同;④有12条棱;⑤所有的棱长度都相等;⑥有8个顶点. 6. 长方体的棱长总和=(长+宽+高)×4 7. 正方体的棱长总和=棱长×12 8. 长方体六个面的面积总和叫做长方体的表面积. 9. 上面或下面面积=长×宽;前面或后面面积=长×高;左面或右面面积=宽×高. 10. 长方体的表面积=(长×宽+长×高+宽×高)×2 11. 正方体的表面积=棱长2×6 12. “有两个相对的面是正方形”的长方体表面积=正方形面的面积×2+长方形面的面积×4 13. 长方体的侧面积=底面周长×高 14. 物体所占空间的大小,叫做物体的体积. 15. 常用的体积单位有立方厘米,立方分米和立方米,可以分别写成cm3,dm3,和m3. 16. 棱长是1cm的正方体,体积是1cm3;棱长是1dm的正方体,体积是1dm3;棱长是1m的正方体,体积是1m3. 17. 长方体的体积=长×宽×高;用字母表示是V=abh 18. 正方体的体积=棱长3;用字母表示是V=a3 19. 长方体(或正方体)的体积=底面积×高=横截面积×长 20. 在工程上,1立方米简称1方. 21. 1个长方体或正方体,如果所有的棱长都扩大n倍,那么棱长总和也扩大n倍,表面积扩大n2倍,体积扩大n3倍. 22. 棱长总和相等的长方体或正方体,正方体的体积最大. 23. 1立方米=1000立方分米;1立方分米=1000立方厘米. 24. 每相邻两个长度单位间的进率是10;每相邻两个面积单位之间的进率是100;每相邻两个体积单位之间的进率是1000. 25. 容器所能容纳物体的体积,通常叫做它们的容积.计量容积,一般就用体积单位. 26. 计量液体的体积,常用的容积单位是升和毫升,也可以写成L和ml. 27. 1升相当于1立方分米,1毫升相当于1立方厘米,所以1升=1000毫升. 28. 长方体或正方体容器容积的计算方法,跟体积的计算方法相同,但要从容器里面量长、宽、高.所以容器的容积比体积要小一些. 29. 浸没在水中的物体的体积=现在水的体积-原来水的体积=容器的长×容器的宽×水面上升的高度 30. 怎样测量一个不规则的物体的体积呢?先在量杯里装上适量的水,记下水面对应的刻度,再把物体浸没在水中,再记下新的水面对应刻度.两次刻度的差,就是这个不规则物体的体积. 第四单元:分数的意义和性质 1. 一个物体或是几个物体组成的一个整体都可以用自然数1来表示,我们通常把它叫做单位“1”. 2. 把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数.例如3/7表示把单位“1”平均分成7份,取其中的3份. 3. 5/8米按分数的意义,表示:把1米平均分成8份,取其中的5份.按分数与除法的关系,表示:把5米平均分成8份,取其中的1份. 4. 把单位“1”平均分成若干份,表示其中一份的数叫分数单位. 5. 分数和除法的关系是:分数的分子相当于除法中的被除数,分数的分数线相当于除法中的除号,分数的分母相当于除法中的除数,分数的分数值相当于除法中的商. 6. 把一个整体平均分成若干份,求每份是多少,用除法.总数÷份数=每份数. 7. 求一个数量是另一个数量的几分之几,用除法.一个数量÷另一个数量=几分之几(几倍). 8. 分子比分母小的分数叫真分数.真分数小于1. 9. 分子比分母大或分子和分母相等的分数叫做假分数.假分数大于1或等于1. 10. 带分数包括整数部分和分数部分,分数部分应当是真分数.带分数大于1. 11. 把假分数化成带分数的方法是用分子除以分母,商是整数部分,余数是分子,分母不变.把带分数化成假分数的方法是用整数部分乘分母的积加原来的分子作分子,分母不变. 12. 整数可以看成分母是1的假分数.例如5可以看成是5/1. 13. 分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变.这叫做分数的基本性质. 14. 几个数公有的因数叫做这几个数的公因数,其中最大的公因数叫作它们的最大公因数.最小公因数一定是1. 15. 几个数公有的倍数叫做这几个数的公倍数,其中最小的公倍数叫作它们的最小公倍数.没有最大的公倍数. 16. 求最大公因数或最小公倍数可以用列举法,也可以用短除法分解质因数. 17. 公因数只有1的两个数叫做互质数.分子和分母是互质数的分数叫做最简分数.最简分数不一定是真分数. 18. 除法计算的结果可以用分数表示,比较方便.如果计算结果可以约分的话,要化简成最简分数. 19. 如果两个数是倍数关系,那么它们的最大公因数是较小的数,最小公倍数是较大的数. 20. 如果两个数是互质关系,那么它们的最大公因数是1,最小公倍数是它们的积. 21. 数A×数B=它们的最大公因数×它们的最小公倍数. 22. 两个数是互质数的几种特殊情况有:1、1和任何数都是互质数;2、两个相邻的自然数一定是互质数;3、两个相邻的奇数一定是互质数;4、两个不同的质数一定是互质数;5、一个质数和一个不是它倍数的合数一定是互质数. 23. 把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分.把几个异分母分数分别化成和原来分数相等的同分母分数,叫做通分. 24. 把分数化成小数的方法是用分子除以分母;把小数化成分数的方法是先写成分母是10、100……的分数,然后再进行约分. 25. 如果一个最简分数的分母除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数. 26. 两个数的最大公因数等于两个数公有的质因数的积;两个数的最小公倍数等于两个数公有的质因数×它们各自独有的质因数. 27. 两个数的公因数,都是这两个数的最大公因数的因数;两个数的公倍数,都是这两个数的最小公倍数的倍数. 此资料来源于网络.希望对你有帮助.


五年级下册数学公式所有

和差问题的公式
(和+差 ) ÷2=大数
(和-差 ) ÷2=小数
和倍问题
和÷(倍数- 1)=小数
小数 ×倍数=大数
(或者 和-小数=大数 )
差倍问题
差÷(倍数- 1)=小数
小数 ×倍数=大数
(或 小数+差=大数 )
植树问题
1 非封闭线路上的植树问题主要可分为以
下三种情形 :
⑴如果在非封闭线路的两端都要植树 ,那么 :
株数=段数+ 1=全长 ÷株距- 1
全长=株距 ×(株数- 1)
株距=全长 ÷(株数- 1)
⑵如果在非封闭线路的一端要植树 ,另一端
不要植树 ,那么 :
株数=段数=全长 ÷株距
全长=株距 ×株数
株距=全长 ÷株数
⑶如果在非封闭线路的两端都不要植树 ,那
么:
株数=段数- 1=全长 ÷株距- 1
全长=株距 ×(株数+ 1)
株距=全长 ÷(株数+ 1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长 ÷株距
全长=株距 ×株数
株距=全长 ÷株数
盈亏问题
(盈+亏 ) ÷两次分配量之差=参加分配的份数
(大盈-小盈 ) ÷两次分配量之差=参加分配
的份数
(大亏-小亏 ) ÷两次分配量之差=参加分配
的份数
相遇问题
相遇路程=速度和 ×相遇时间
相遇时间=相遇路程 ÷速度和
速度和=相遇路程 ÷相遇时间
追及问题
追及距离=速度差 ×追及时间
追及时间=追及距离 ÷速度差
速度差=追及距离 ÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度= (顺流速度+逆流速度 ) ÷2
水流速度= (顺流速度-逆流速度 ) ÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量 ÷溶液的重量 ×100% =浓度
溶液的重量 ×浓度=溶质的重量
溶质的重量 ÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润 ÷成本 ×100% =(售出价 ÷成本
-1)×100%
涨跌金额=本金 ×涨跌百分比
折扣=实际售价 ÷原售价 ×100%( 折扣< 1)
利息=本金 ×利率 ×时间
税后利息=本金 ×利率 ×时间 ×(1-20%)
每份数 ×份数=总数 总数 ÷每份数=份数
总数 ÷份数=每份数
2、1 倍数 ×倍数=几倍数 几倍数 ÷1 倍数=
倍数 几倍数 ÷倍数= 1 倍数
3、速度 ×时间=路程 路程 ÷速度=时间 路
程÷时间=速度
4、单价 ×数量=总价 总价 ÷单价=数量 总
价÷数量=单价
5、工作效率 ×工作时间=工作总量 工作总
量÷工作效率=工作时间 工作总量 ÷工作时
间=工作效率
6、加数+加数=和 和-一个加数=另一个
加数
7、被减数-减数=差 被减数-差=减数
差+减数=被减数
8、因数 ×因数=积 积÷一个因数=另一个因

9、被除数 ÷除数=商 被除数 ÷商=除数 商×
除数=被除数
小学数学图形计算公式
1、正方形 (C:周长 S:面积 a:边长)
周长=边长 ×4 C=4a
面积 =边长 ×边长 S=a×a
2、正方体 (V:体积 a:棱长 )
表面积 =棱长 ×棱长 ×6 S 表 =a×a×6
体积 =棱长 ×棱长 ×棱长 V=a×a×a
3、长方形 ( C:周长 S:面积 a:边长 )
周长 =(长+宽 ) ×2 C=2(a+b)
面积 =长×宽 S=ab
4、长方体 (V:体积 s:面积 a:长 b: 宽 h:
高)
(1)表面积 (长 ×宽+长×高+宽×高) ×2
S=2(ab+ah+bh)
(2)体积 =长×宽 ×高 V=abh
5、三角形 (s:面积 a:底 h:高)
面积 =底×高÷2 s=ah÷2
三角形高 =面积 ×2÷底 三角形底 =面积
×2÷高
6、平行四边形 ( s:面积 a:底 h:高)
面积 =底×高 s=ah
7、梯形 (s:面积 a:上底 b:下底 h:
高)
面积 =(上底 +下底 ) ×高÷2 s=(a+b) × h ÷2
8、圆形 (S:面积 C:周长 л d=直径 r=
半径)
(1)周长 =直径 ×л =2×л× 半径 C=лd=2лr
(2)面积 =半径 ×半径 ×л
9、圆柱体 (v:体积 h:高 s:底面积 r:底
面半径 c:底面周长)
(1)侧面积 =底面周长 ×高=ch(2 лr或 лd) (2)
表面积 =侧面积 +底面积 ×2
(3)体积 =底面积 ×高 (4)体积=侧面积 ÷2×
半径
10、圆锥体 (v:体积 h:高 s:底面积 r:底
面半径)
体积 =底面积 ×高÷3
11、总数 ÷总份数=平均数
12、和差问题的公式
(和+差 ) ÷2=大数 (和-差 ) ÷2=小数
13、和倍问题
和÷(倍数- 1)=小数 小数 ×倍数=大数 (或
者 和-小数=大数 )
14、差倍问题
差÷(倍数- 1)=小数 小数 ×倍数=大数 (或
小数+差=大数 )
15、相遇问题
相遇路程=速度和 ×相遇时间
相遇时间=相遇路程 ÷速度和
速度和=相遇路程 ÷相遇时间
16、浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量 ÷溶液的重量 ×100% =浓度
溶液的重量 ×浓度=溶质的重量
溶质的重量 ÷浓度=溶液的重量
17、利润与折扣问题
利润=售出价-成本
利润率=利润 ÷成本 ×100% =(售出价 ÷成本
-1)×100%
涨跌金额=本金 ×涨跌百分比
利息=本金 ×利率 ×时间
税后利息=本金 ×利率 ×时间 ×(1-20%)


五年级下册数学内容有哪些?

第一单元观察物体考查的比较多内容是画出三个方向的观察图或者是根据三视图判断出来原题什么样形状。第二单元因数和倍数,这一单元内容比较抽象有些难以理解。质数合数考查的比较多,如何找因数和如何找倍数也是考试中经常出现的内容。第三单元长方体和正方体,这一单元中考查比较多的是棱长、表面积和体积的计算,一定要灵活运用公式,选择合适的变形式进行计算。第四单元分数的意义和性质,这一单元内容是最多的、也是最难的部分。真假分数、分数基本性质都是经常考的内容,约分、通分、分数小数的互化是期末考试中的必考内容。第六单元分数的加法和减法,这一单元中考查的最多的是异分母分数的加减法运算、分数的混合运算,一定要加强孩子的约分能力。第七八单元都是比较简单的内容,找次品时候要尽可能平均分成3份。内容简介《七彩课堂:数学(5年级下册)(人教实验版)》课堂练习:及时讲,及时练,及时掌握知识点。小提示:指出错误的学习习惯、学习方法,提出修改的建议。举一反三:深刻领会相应知识点,提高解题能力,触类旁通培养思维的灵活性和深刻性。创新题:热点、开方、创新。举例说明:呈现与重要知识点相关的例子,到达“一题领一串”的效果。金点子:知识和技能有机结合,构建完善的知识网络。易错集锦:易错环节的归纳与梳理,深入分析易错的原因总结,总结避免错误的方法。以上内容参考 百度百科-数学五年级下册

五年级下册数学内容有哪些?

五年级下册数学内容有如下:1、因数:一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。一个数的因数的求法:成对地按顺序找,或用除法找。2、倍数:一个数的倍数的个数是无限的,最小的倍数是它本身。一个数的倍数的求法:依次乘自然数。3、自然数按能不能被2整除分为:奇数、偶数。奇数:不是2的倍数的数叫做奇数。偶数:是2的倍数的数叫做偶数。最小的奇数是1,最小的偶数是0。4、合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。如4、6、8、9、10、12、14、15、16、18、20、22都是合数。5、公因数、最大公因数。几个数公有的因数叫这些数的公因数。其中最大的那个因数就叫它们的最大公因数。用短除法分解质因数(一个合数写成几个质数相乘的形式)例:12=2×2×3。

未知数是几年级开始学的?

未知数是四年级开始学的。教学目标1使学生初步学会列含有未知数X的等式,解答需要逆思考的加、减法一步应用题。2培养学生分析推理能力。教教学过程求未知数X(要求口述口算过程,并说出根据)其教学难点在于准确迅速地找出等量关系。数学含义:未知数(unknown number)是在解方程、解比例中有待确定的值。我国古代并不用符号来表示未知数,而是用筹算来解方程。至宋、元时代李治的“天元术”,用“立天元”表示未知数,并在相应的系数旁写一个元字以为记号。至元朝朱世杰(约13 世纪)用天、地、人、物表示四个未知数,建立了四元高次方程组理论。数学中的消元问题中元的叫法也由此而来。

求五年级上数学应用题(大约50道)

1、在中原路上铺一条地下电缆,已经铺了34 ,还剩下250米没有铺.这条电缆全长多少米
2、修一段路,第一天修了全长的1/4 ,第二天修了90米,这时还剩下150米没有修.这段路全长多少米?
3、建筑工地有一堆黄沙,用去了23 ,正好用去了60吨.这堆黄沙原来有多少吨?
4、声音在空气中3秒钟大约传1千米,光的速度每秒大约300000千米,声音的速度大约是光速的几分之几?
5、一块小麦试验田,原计划每公顷产小麦8吨,实际每公顷产小麦之几?
6、职工食堂4月份计划烧煤5吨,实际烧煤4.8吨.节约了百分之几?
7、用5000千克小麦可以磨出面粉4250千克,求小麦的出粉率.
8、小麦的出粉率是80%,要磨出面粉640千克,需要多少千克小麦?
9、六(1)班有学生50人,某天请假2人,求这天的出勤率?
10、植树节那天共植树若干棵,成活了485棵,没有成活的15棵,求这次植树的成活率.
11、王老师到体育用品商店买了5只小足球,付出100元,找回32.5元,每只小足球多少元?
12、甲乙两辆汽车同时从相距255千米的两地相对开出,甲车每小时行52千米,乙车每小时行57千米,经过几小时后两车还相距37千米?
13、师徒二人共加工208个机器零件,师傅加工的零件数比徒弟的2倍还多4个,师傅和徒弟各加工多少个零件?
14、王芳的存款数是李丽存款数的2.2倍,如果李丽再存入银行75元,两人的存款数就相等了,原来两人各存款多少元?
15、五年级买一批笔记本奖给三好学生,如果每人奖给5本,还剩3本;如果每人奖给6本,又少12本.五年级评出三好学生多少名?买了多少本笔记本?
16、山坡上有羊80只,其中白羊是黑羊的4倍,山坡上黑羊、白羊各多少只?
17、商店里卖出两筐柑橘,第一筐重26千克,第二筐重29千克,第二筐比第一筐多卖了9元钱,平均每千克柑橘多少元?(用两种方法解)
18、一块梯形麦田,面积是540平方米,高18米,上底是20米,下底是多少米?
19、甲乙两车从相距750千米的两地同时开出,相向而行,5小时相遇,甲车每小时行80千米,乙车每小时行多少千米?
20、两辆汽车同时从同地开出,行驶4.5小时后,甲车落在乙车的后面13.5千米,已知甲车每小时行35千米,乙车每小时行多少千米?
21、同学们去春游,车上已经坐了45人;还有4个小组在等下一辆车,每组9人.去春游的一共有多少人?
22、一共有150人去春游,已经走了54人,剩下的坐两辆车去,平均每辆车要坐多少人?
23、舞蹈队里有18名男生,女生人数是男生的2倍,舞蹈队里男、女生一共有多少人?
24、同学们做花,小军做了63朵,小红做的花比小军少做18朵,两人一共做了多少朵花?
25、食堂里第一次买来白菜25千克,第二次买来白菜175千克,按每千克白菜6角钱计算,食堂里买白菜一共用去多少钱?
26、小华给小刚看一本书,小华4天看了132页,小刚3天看96页,谁看得快?为什么?
27、妈妈给小明买了3件汗衫,每件汗衫23元,付给营业员100元,还应找回多少元?
28、体育用品商店原来有72只篮球,卖出60只,又购进45只,现在有多少只篮球?
29、同学们去天文台参观,女生有9人,男生去的人数是女生的3倍,一辆40座的汽车够坐么?
30、学校活动室里有24盒象棋,军旗的盒数是象棋的两倍,跳棋有12盒,跳棋比军旗少多少盒?
31. 学校买来白粉笔80盒,红粉笔20盒,用了60盒,还剩多少盒?
32. 老师有8袋乒乓球,每袋6个,借给同学15个,还剩多少个?
33. 老师拿70元去买书,买了7套故事书,每套9元,还剩多少元?
34. 制衣组有90米布,用了63米,剩下的布做了9套衣服.平均每套衣服用布多少米?
35. 食品店有80包方便面,上午卖了26包,下午卖了34包,还剩多少包?(用两种方法解答)
36、 某化肥厂一月份生产化肥310吨,二月份生产400吨,三月份生产490吨化肥,平均每月生产化肥多少吨?
37、一匹马每天吃12千克草, 照这样计算, 25匹马, 一星期可吃多少千克草?(用两种方法计算)
38、工人王师傅和徒弟做机器零件, 王师傅每小时做45个, 徒弟每小时做28个, 王师傅工作6小时, 徒弟工作8小时, 他们共做多少个机器零件?
39、工厂有煤8000千克, 原计划烧25天, 由于改进炉灶, 实际烧了32天, 平均每天比原计划节约多少千克?
40、工地需要1280袋水泥, 用8辆大车4次才全部运来, 一辆大车, 一次可运多少袋化肥?(用两种方法计算)
41、 农具厂上半年生产农具4650件,下半年生产农具5382件,全年平均每月生产多少件?
42、 服装加工部用120米布可做成人制服24套, 如果做儿童服装, 可做30套, 每套儿童服装比成人服装少用布多少米?
43、一个养鸡场四月份卖出12300只鸡, 五月份卖出的比四月份的2倍还少200只, 两个月一共卖出多少只鸡?
44、一台磨面机每小时磨面800千克,照这样计算,6台磨面机5小时能磨面粉多少千克?(用两种方法解答)
45、一堆煤共800吨,用5辆卡车,16次可以运完,平均每辆卡车每次运几吨?
46、一辆汽车6小时行了300千米,一列火车6小时行了600千米,火车比汽车每小时多行多少千米?
47、向阳小学气象小组一周中,测得每天的最高气温分别为:31、31、34、32、33、30、33度.这一周最高平均气温是多少度?
48、某工厂原计划一年生产农具4800部, 实际用10个月就完成了任务, 实际平均每月比原计划每月多生产多少部农具?
49、一台机器8小时可以加工320个零件, 照这样计算, 要用5台机器加工2000个零件, 需要多少小时?
50、某煤矿四月份计划出煤38400吨,技术革新后平均每天比原计划每天增产256吨,四月份实际生产多少吨煤?(按30天计算)

应该够吧


五年级数学应用题25道

【 #五年级# 导语】应用题是用语言或文字叙述有关事实,反映某种数学关系(譬如:数量关系、位置关系等),并求解未知数量的题目。每个应用题都包括已知条件和所求问题。下面是 无 整理的内容,希望对你们有帮助! 1.五年级数学应用题   1、小张,小李,小王三人称体重,小张和小李合称共重90.8千克,小王和小李合称共重88.5千克.求小张比小王重多少千克?   2、张大伯家种了三块责任田.第一块1080平方米,比第二块多15.7平方米,第三块比第一块少8.5平方米.请你根据已知条件,至少提出两个问题,并解答.   3、爸爸的身高比小红高0.52米,比妈妈的身高高0.21米,妈妈的身高比小红高多少米   4、超市有一种红外线遥控坦克玩具,售价130.00元,打折后便宜了13.00元,小明准备用买两辆迷你赛车的钱去买这辆玩具坦克,每辆迷你赛车售价55.00元,他的钱够吗如果不够,还差多少钱?   5、水泥厂今年拨出332.4万元用于治污,改建污水池用去234.7万元,又拨款85.5万元,.现在厂里治污款还有多少万元? 2.五年级数学应用题   1、一只非洲鸵鸟中约150千克500克,一头猪中约123.06千克,一只鸵鸟比一头猪重多少千克再把结果写成复名数.?   2、一种播种机的播种宽度是3米,播种机每小时行5千米,照这样计算,2小时可以播种多少公顷?   3、甲,乙两地相距220米,小华和小红分别从甲,乙两地出发相对走来,当小华走了85.2米,小红走了70.5米时,两人还相距多少米?   4、小明买了一支钢笔和一本日记本,钢笔的单价是12.7元,日记本的价钱是4.5元.小明付给营业员20元,应找回多少元? 3.五年级数学应用题   1、水泥厂计划生产水泥3600吨,用20天完成。实际每天比计划多生产20吨,实际多少天完成任务?   2、一堆煤3.6吨,计划可以烧10天,改进炉灶后,每天比原计划节约0.06吨,这堆煤现在可以烧多少天?   3、小红身高是156厘米,小芳身高是1.52米,小红比小芳高多少?   4、50千克油菜籽可以榨油15千克,照这样计算,5吨油菜籽可以榨油多少千克?   5、小明家离学校1.5千米,小南家离学校1千米60米,谁家离学校近近多少? 4.五年级数学应用题   1、粮店运来两车面粉,每车装80袋,每袋25千克。这个粮店运来多少千克面粉?(用两种方法解答)   2、三年级同学到菜园收白菜,分成4组,每组11人,平均每人收45千克。一共收白菜多少千克?   3.化肥厂计划生产7200吨化肥,已经生产了4个月,平均每月生产化肥1200吨,余下的每月生产800吨,还要生产多少个月才能完成?   4、塑料厂计划生产1300件塑料模件,6天生产了780件。照这样计算,剩下的还要生产多少天才能完成? 5.五年级数学应用题   1、大卡车每小时行50千米,小汽车每小时行60千米,它们从相距660千米的两地同时出发,相向而行,经过几小时两车相遇?   2、两个工程队合铺一条长6600米的地下管道,甲队从东往西每天铺150米,乙队从西往东每天铺的是甲的1.2倍,经过几天可以铺完?   3、甲、乙两地相距350千米。一辆汽车从甲地开往乙地,每小时行36千米;一辆摩托车从乙地开往甲地,每小时行34千米。   ①两车同时行了2.5小时后,还相距多少千米?   ②两车同时行了几小时后相遇?   ③两车在途中相遇后,又继续行了0.6小时,这时两车相距多远?   4、甲、乙两个城市相距680千米。慢车从甲城开往乙城,每小时行60千米;2小时后,快车从乙城开往甲城,每小时行80千米。快车开出几小时后两车相遇?   5、师徒二人上午8时开始合做一批零件,师傅每小时做27个,徒弟每小时做25个。已知他们共做了130个,完成任务时是几时几分? v

上一篇:五年级下册语文书

下一篇:五毛钱