数列公式总结有哪些?
有等差数列和等比数列,其中有等差数列公式和求和公式,等比数列求和公式。若通项公式变形为(n∈N*),当q>0时,则可把看作自变量n的函数,点(n)是曲线上的一群孤立的点。等差数列的通项公式为:an=a1+(n-1)d或an=am+(n-m)d。前n项和公式为:Sn=na1+n(n-1)d/2或Sn=(a1+an)n/2。若m+n=p+q则:存在am+an=ap+aq。若m+n=2p则:am+an=2ap。以上n均为正整数。数列的函数理解:①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。以上内容参考 百度百科-数列
数学数列的公式
高中数学数列所有公式高中数学“数列”的所有有关公式 等比数列:
若q=1 则S=n*a1
若q≠1
推倒过程:
S=a1+a1*q+a1*q^2+……+a1*q^(n-1)
等式两边同时乘q
S*q=a1*q+a1*q^2+a1*q^3+……+a1*q^
1式-2式 有
S=a1*(1-q^n)/(1-q)
等差数列
推倒过程:
S=a1+(a1+d)+(a1+2d)+……(a1+(n-1)*d)
把这个公式倒着写一遍
S=(a1+(n-1)*d) +(a1+(n-2)*d)+(a1+(n-3)*d)+……+a1
上两式相加有
S=(2a1+(n-1)d)*n/2=n*a1+n*(n-1)*d/2
一、 等差数列
如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。
等差数列的通项公式为:
an=a1+(n-1)d (1)
前n项和公式为:
Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)
从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。
在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项。
,
且任意两项am,an的关系为:
an=am+(n-m)d
它可以看作等差数列广义的通项公式。
从等差数列的定义、通项公式,前n项和公式还可推出:
a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
若m,n,p,q∈N*,且m+n=p+q,则有
am+an=ap+aq
Sm-1=(2n-1)an,S2n+1=(2n+1)an+1
Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。
和=(首项+末项)*项数÷2
项数=(末项-首项)÷公差+1
首项=2和÷项数-末项
末项=2和÷项数-首项
项数=(末项-首项)/公差+1
等差数列的应用:
日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别
时,当其中的最大尺寸与最小尺寸相差不大时,长安等差数列进行分级。
若为等差数列,且有ap=q,aq=p.则a(p+q)=-(p+q)。
若为等差数列,且有an=m,am=n.则a(m+n)=0。
等比数列:
如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。
(1)等比数列的通项公式是:An=A1*q^(n-1)
(2)前n项和公式是:Sn=[A1(1-q^n)]/(1-q)
且任意两项am,an的关系为an=am·q^(n-m)
(3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)若m,n,p,q∈N*,则有:ap·aq=am·an,
等比中项:aq·ap=2ar ar则为ap,aq等比中项。
记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。
性质:
①若 m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq;
②在等比数列中,依次每 k项之和仍成等比数列.
“G是a、b的等比中项”“G^2=ab(G≠0)”.
在等比数列中,首项A1与公比q都不为零.
注意:上述公式中A^n表示A的n次方。 希望可以帮助您哦!!!
高中数列所有公式
数列求和常用公式:
1)1+2+3+......+n=n(n+1)÷2
2)1^2+2^2+3^2+......+n^2=n(n+1)(2n+1)÷6
3) 1^3+2^3+3^3+......+n^3=( 1+2+3+......+n)^2
=n^2*(n+1)^2÷4
4) 1*2+2*3+3*4+......+n(n+1)
=n(n+1)(n+2)÷3
5) 1*2*3+2*3*4+3*4*5+......+n(n+1)(n+2)
=n(n+1)(n+2)(n+3)÷4
6) 1+3+6+10+15+......
=1+(1+2)+(1+2+3)+(1+2+3+4)+......+(1+2+3+...+n)
=[1*2+2*3+3*4+......+n(n+1)]/2=n(n+1)(n+2) ÷6
7)1+2+4+7+11+......
=1+(1+1)+(1+1+2)+(1+1+2+3)+......+(1+1+2+3+...+n)
=(n+1)*1+[1*2+2*3+3*4+......+n(n+1)]/2
=(n+1)+n(n+1)(n+2) ÷6
8)1/2+1/2*3+1/3*4+......+1/n(n+1)
=1-1/(n+1)=n÷(n+1)
9)1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+......+1/1+2+3+...+n)
=2/2*3+2/3*4+2/4*5+......+2/n(n+1)
=(n-1) ÷(n+1)
10)1/1*2+2/2*3+3/2*3*4+......+(n-1)/2*3*4*...*n
=(2*3*4*...*n- 1)/2*3*4*...*n
11)1^2+3^2+5^2+..........(2n-1)^2=n(4n^2-1) ÷3
12)1^3+3^3+5^3+..........(2n-1)^3=n^2(2n^2-1)
13)1^4+2^4+3^4+..........+n^4
=n(n+1)(2n+1)(3n^2+3n-1) ÷30
14)1^5+2^5+3^5+..........+n^5
=n^2 (n+1)^2 (2n^2+2n-1) ÷ 12
15)1+2+2^2+2^3+......+2^n=2^(n+1) – 1
ps:数列的性质:
等差数列的基本性质
⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.
⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.
⑶若{ a }、{ b }为等差数列,则{ a ±b }与{ka +b}(k、b为非零常数)也是等差数列.
⑷对任何m、n ,在等差数列{ a }中有:a = a + (n-m)d,特别地,当m = 1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.
⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l + k + p + … = m + n + r + … (两边的自然数个数相等),那么当{a }为等差数列时,有:a + a + a + … = a + a + a + … .
⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd( k为取出项数之差).
⑺如果{ a }是等差数列,公差为d,那么,a ,a ,…,a 、a 也是等差数列,其公差为-d;在等差数列{ a }中,a -a = a -a = md .(其中m、k、 )
⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.
⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.
⑽设a ,a ,a 为等差数列中的三项,且a 与a ,a 与a 的项距差之比 = ( ≠-1),则a = .
5.等差数列前n项和公式S 的基本性质
⑴数列{ a }为等差数列的充要条件是:数列{ a }的前n项和S 可以写成S = an + bn的形式(其中a、b为常数).
⑵在等差数列{ a }中,当项数为2n (n N )时,S -S = nd, = ;当项数为(2n-1) (n )时,S -S = a , = .
⑶若数列{ a }为等差数列,则S ,S -S ,S -S ,…仍然成等差数列,公差为 .
⑷若两个等差数列{ a }、{ b }的前n项和分别是S 、T (n为奇数),则 = .
⑸在等差数列{ a }中,S = a,S = b (n>m),则S = (a-b).
⑹等差数列{a }中, 是n的一次函数,且点(n, )均在直线y = x + (a - )上.
⑺记等差数列{a }的前n项和为S .①若a >0,公差d<0,则当a ≥0且a ≤0时,S 最大;②若a <0 ,公差d>0,则当a ≤0且a ≥0时,S 最小.
3.等比数列的基本性质
⑴公比为q的等比数列,从中取出等距离的项,构成一个新数列,此数列仍是等比数列,其公比为q ( m为等距离的项数之差).
⑵对任何m、n ,在等比数列{ a }中有:a = a · q ,特别地,当m = 1时,便得等比数列的通项公式,此式较等比数列的通项公式更具有普遍性.
⑶一般地,如果t ,k,p,…,m,n,r,…皆为自然数,且t + k,p,…,m + … = m + n + r + … (两边的自然数个数相等),那么当{a }为等比数列时,有:a .a .a .… = a .a .a .… ..
⑷若{ a }是公比为q的等比数列,则{| a |}、{a }、{ka }、{ }也是等比数列,其公比分别为| q |}、{q }、{q}、{ }.
⑸如果{ a }是等比数列,公比为q,那么,a ,a ,a ,…,a ,…是以q 为公比的等比数列.
⑹如果{ a }是等比数列,那么对任意在n ,都有a ·a = a ·q >0.
⑺两个等比数列各对应项的积组成的数列仍是等比数列,且公比等于这两个数列的公比的积.
⑻当q>1且a >0或0<q<1且a <0时,等比数列为递增数列;当a >0且0<q<1或a <0且q>1时,等比数列为递减数列;当q = 1时,等比数列为常数列;当q<0时,等比数列为摆动数列.
4.等比数列前n项和公式S 的基本性质
⑴如果数列{a }是公比为q 的等比数列,那么,它的前n项和公式是S =
也就是说,公比为q的等比数列的前n项和公式是q的分段函数的一系列函数值,分段的界限是在q = 1处.因此,使用等比数列的前n项和公式,必须要弄清公比q是可能等于1还是必不等于1,如果q可能等于1,则需分q = 1和q≠1进行讨论.
⑵当已知a ,q,n时,用公式S = ;当已知a ,q,a 时,用公式S = .
⑶若S 是以q为公比的等比数列,则有S = S +qS .⑵
⑷若数列{ a }为等比数列,则S ,S -S ,S -S ,…仍然成等比数列.
⑸若项数为3n的等比数列(q≠-1)前n项和与前n项积分别为S 与T ,次n项和与次n项积分别为S 与T ,最后n项和与n项积分别为S 与T ,则S ,S ,S 成等比数列,T ,T ,T 亦成等比数列
急需::高中数列公式大全(比较全面点的)
a1为首项,an为第n项的通项公式,d为公差 前n项和公式为:Sn=na1+n(n-1)d/2 Sn=(a1+an)n/2 若m+n=p+q则:存在am+an=ap+aq 若m+n=2p则:am+an=2ap 以上n.m.p.q均为正整数
(1)等比数列的通项公式是:An=A1×q^(n-1) 若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。 (2) 任意两项am,an的关系为an=am·q^(n-m) (3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n} (4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。 (5) 等比求和:Sn=a1+a2+a3+.......+an ①当q≠1时,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q) ②当q=1时, Sn=n×a1(q=1) 记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1 另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数
数学数列的公式是什么?
等差数列的通项公式为:an=a1+(n-1)d,或an=am+(n-m)d。等比数列的通项公式是:An=A1×q^(n-1)。任意两项am,an的关系为an=am·q^(n-m)。等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。等比数列:一个数列从第2项起,每一项与它的前一项的比等于同一个常数,且每一项都不为0(常数)。这个常数叫做等比数列的公比,公比通常用字母q表示。等差数列:一个数列从第二项起,每一项与它的前一项的差等于同一个常数。而这个常数叫做等差数列的公差,公差通常用字母d表示。扩展资料:数列的函数理解:数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。函数不一定有解析式,同样数列也并非都有通项公式。参考资料:数列公式-百度百科
求数列通项公式an和前n项和Sn的方法
1,等差数列an=a1+(n-1)d;an=Sn-S(n-1)Sn=a1n+((n*(n-1))/2)d2,等比数列an=a1*q^(n-1);an=Sn/S(n-1)Sn=(a1(1-q^n))/1-q扩展材料思路基本思路与方法: 复合变形为基本数列(等差与等比)模型 ; 叠加消元 ;连乘消元思路一: 原式复合 ( 等比形式)可令an+1 - ζ = A * (an - ζ )········① 是原式☉变形后的形式,即再采用待定系数的方式求出 ζ 的值, 整理①式 后得an+1 = A*an + ζ - A*ζ , 这个式子与原式对比可得,ζ - A*ζ = B即解出 ζ = B / (1-A)回代后,令 bn =an - ζ ,那么①式就化为bn+1 =A*bn , 即化为了一个以(a1 - ζ )为首项,以A为公比的等比数列,可求出bn的通项公式,进而求出 {an} 的通项公式。思路二: 消元复合(消去B)由 an+1 = A *an + B ········☉ 有an = A* an-1 +B ··········◎☉式减去◎式可得 an+1 - an = A *( an - an-1)······③令bn = an+1 - an 后, ③式变为bn = A*bn-1 等比数列,可求出bn 的通项公式,接下来得到 an - an-1 = (其中 为关于n的函数)的式子, 进而使用叠加方法可求出 an。参考资料来源 数列通项公式-百度百科