解方程应用题

时间:2024-06-05 17:34:26编辑:奇事君

小学四年级解方程应用题及答案

1、 解放军某部进行军事训练,要行军502千米,开始每天走60千米,走了3天后,余下的路程每天多走20.5千米,需要几天走完?
  分析:开始每天走6O千米,走了3天后,根据路程=速度×时间,求出3天走的路程,又因为余下的路程每天多走20.5千米,即60+20.5=80.5千米,再用总路程减去3天行的路程,除以速度,即可求出余下的路程还需要几天才能走完,列式解答即可.
解答: 解:(502-60×3)÷(60+20.5)
=(502-180)÷80.5
=322÷80.5
=4(天)
答:余下的路程还需要4天才能走完.

2、 甲袋大米重68千克,从甲袋倒出15千克到乙袋后,甲袋还比乙袋重5千克。求乙袋原有大米多少千克?
设乙袋原来有大米x千克,乙袋大米有(x-15)千克,
50:(x-15)=5:7
(x-15)×5=50×7
5x-75=350
5x=350+75
5x=425
x=85
答:乙袋原来有大米85千克.

  3、 某钢厂一座炼炉前3天每天炼钢830吨,后5天每天炼钢850吨。求平均每天炼钢多少吨?
设平均每天炼钢x吨.
(3+5)x=3*830+5*850
8x =2490+4250
8x =6740
x =6740/8
x =842.5
答:平均每天炼钢842.5吨.


小学解方程应用题带答案

1、 解放军某部进行军事训练,要行军502千米,开始每天走60千米,走了3天后,余下的路程每天多走20.5千米,需要几天走完?

2、 甲袋大米重68千克,从甲袋倒出15千克到乙袋后,甲袋还比乙袋重5千克。求乙袋原有大米多少千克?

3、 某钢厂一座炼炉前3天每天炼钢830吨,后5天每天炼钢850吨。求平均每天炼钢多少吨?

4、 摩托车驾驶员以每小时20千米的速度行了60千米,回来时每小时行30千米。往返全程的平均速度是多少?

5、 某机床厂第一车间的职工,用18台车床2小时生产机器零件720件,20台这样的车床3小时生产机器零件多少件?

6、 用30千克黄豆可做出120千克豆腐,照这样计算,要做600千克豆腐,需要黄豆多少千克?

7、 一列快车和一列普通客车从甲乙两个城市同时相对开出,快车每小时行90千米,普通客车每小时行48千米,经过2.5小时后,两列火车在途中相遇。求甲乙两城市间的铁路长多少千米?

8、 两地相距28千米,甲乙两辆汽车同时分别从两地同一方向开车。甲车每小时行25千米,乙车每小时行32千米,甲车在前,乙车在后,几小时以后乙车能追上甲车?

9、 把一张长90厘米,宽20厘米的长方形的纸裁成若干张同样大小的正方形纸,要求正方形的边长最大,而且不浪费纸。可以裁多少张正方形?

10、 园林局为了绿化公路,在一段公路的两边每隔4米栽一棵树,一共栽树74棵,现在要改成每隔6米栽一棵树。那么,不移栽的树有多少棵?

11、甲有14.8元,乙有15.2元,俩人要合买一个足球,一个足球的价钱是他俩人钱数总和的2倍,一个足球多少元,他们还差多少元?

12.一台机器3小时耕地15公顷,照这样计算,要耕75公顷地,用5台机器需要多少小时?

13.商店有14箱鸭蛋,卖出去250千克后,还剩4箱零20千克,每箱鸭蛋有多少千克?

14.光明小学为山区同学捐书,四年级捐240本,五年级捐的是 四年级的2倍,六年级比五年级多捐120本,平均每个年级捐多少本?

15.粮店运进大米、面粉各20袋,每袋大米90千克,每袋面粉25千克,运进的大米比面粉多多少千克?(用两种方法解答)

16.两根绳共长48.4米,从第一根上剪去6.4米后,第二根比第一根剩下的2倍还多6米.两根绳原来各长多少米?

17. 四、五年级的学生采集树种,四年级采集树种18.6千克,四年级比五年级少采集2.5千克,两个年级一共采集多少千克树种?

18. 一个车间原来每月用电2450千瓦•时,开展节约活动后,原来一年的用电量,现在可多用2个月,这个车间平均每月节约用电多少千瓦•时?

19. 同学们参加植树劳动,四年级共有96人,每人栽3棵树,五年级有87人,每人栽4棵树,五年级比四年级多栽树多少棵?

20. 第一小组6个同学数学测验的成绩分别是:86、79、98、100、89、94,算一算他们的平均分是多少?

21. 一辆汽车3小时行了135千米,一架飞机飞行的速度是汽车的28倍还少60千米,这架飞机每小时行多少千米?

22 一个服装厂5天生产西服850套,照这样计算,一个月生产西服多少套?(一个月按30天计算)

23. 商店运来8筐苹果和12筐梨,每筐苹果38千克,每筐梨42千克,商店共运来水果多少千克?

24.甲、乙两个建筑队,甲队存水泥64袋,乙队存水泥114袋,以后甲队每天运进18袋,乙队每天运进8袋。几天后,乙队的水泥袋数是甲队的2倍?

25.刘明每天早上7:30上学,第一天每分钟走40米,迟到了7.5分钟;第二天每分钟走60米,早到了5分钟。刘明家离学校有多远?她什莫时间上课?

设票价为x元
x+(35-20)*1.5%x=1323 x=1080

(应该是每千克按1.5%收费,不是15%) 不可能收费这样高,如果这样高,计算结果不是整数,不符合机票现实中的收费,如果按15%,答案就是他们说的407,如果按1.5%,那答案就是我说的1080,是个整数,也符合现实情况.

一列火车通过一座长300米的铁桥,完全通过所用的时间为30秒,完全在桥上的时间为10秒,邱火车的车长以及它的速度。
解:
l+300=30v
300-l=10v
v=15m/s
l=150m
答:车长150m,速度15m/s。

2、某班同学去18千米的北山郊游。只有一辆汽车,需分两组,甲组先乘车,乙组步行。车行至A处,甲组下车步行,车返回接乙组,最后两组同时到达北山。已知汽车速度是60km/h,步行速度是4km/h.求A点距北山的距离。

设甲的速度为x,乙的速度为y
80x+80y=400
80y-80x=400
所以x=0 y=5(这道题时间为80秒与实际不符)
3、设A点距北山的距离为x,车返回到乙组时,乙距出发点距离为y
那么[x-4*(18-x-y)/60]/4=(18-y)/60
y/4=(18-x)/60+(18-x-y)/60
所以x=2 y=2
A点距离北山为2km

3. 牡丹杯足球赛11轮(即每个队均需比赛11场),胜一场得3分,平一场得一分,负一场得0分.国兴三高俱乐部队所胜场数是所负场数的4倍,结果共得25分,此次杯赛该球队胜\负\平各几场?
设胜x场,负y场,则平11-x-y场
x=4y
3x+11-x-y=25

x=8
y=2

胜8场,负2场,平1场

4.课外活动中一些同学分组参加活动,原来每组8人,后来重新编组,每组12人,这样比原来减少了2组,问这些同学共有多少人?
设原来有x组。所以人数是8x
(x-2)12=8x
x=6
共有48人。

5.在地表上方10千米高空有一条高速风带.假设有两架速度相同的飞机在这个风带飞行,其中一架飞机从A地飞往B地,距离是4000米,需要6.5时;同时另一架飞机从B地飞到A地,只花5.2时.问飞机和风的平均速度各是多少?

设飞机的平均速度为xkm/h,风速为ykm/h。
由题意可知,从A地到B地逆风,从B地到A地顺风。可列方程:
x+y=4/5.2
x-y=4/6.5
解得:x=9/13,y=1/13

6.一支队伍以5千米/小时的速度行进,20分钟后,一通讯员打的以15千米/小时的速度追赶队伍,那他多少小时后追上队伍?

5*(1/3)+5*X=15*X
x=1/6

6. 一收割机每天收割小麦12公顷,割完麦地的2/3后,效率提高到原来的5/4倍,因此比预定时间提早1天完成,问麦地共有多少公顷?
设麦地有x公顷,因为已割完了2/3,所以还剩1/3,得方程:
(1/3)x/12=(1/3)x/[12*(5/4)]+1
化简得:
(5/3)x=(4/3)x+60
(1/3)x=60
x=180
所以麦地有180公顷.

7.甲、乙两人按2:5的比例投资开办了一家公司,约定出去各项支出外,所得利润按投资比例分成,若第一年赢利14000元,那么甲、乙两人分别应分得多少元?列【方程组】解答
解:设每分为X
2X+5X=14000
7X=14000
X=2000
2X=4000
5X=10000
所以甲分到4000元,乙分到10000元

8.民航规定:乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超过部分每千克按飞机票价的15%购买行李票.一名旅客带了35千克行李乘机,机票连同行李票共付1323元,求该旅客的机票票价.
请列方程解应用题
设票价为x元
x+(35-20)*1.5%x=1323 x=1080
(应该是每千克按1.5%收费,不是15%) 不可能收费这样高,如果这样高,计算结果不是整数,不符合机票现实中的收费,如果按15%,答案就是他们说的407,如果按1.5%,那答案就是我说的1080,是个整数,也符合现实情况.

9.商店在销售二种售价一样的商品时,其中一件盈利25%,另一件亏损25%,卖这两件商品总的是盈利还是亏损?

解:设这两件商品售价都为x元
因为进价为,x/(1+25%)+x/(1-25%)=4/5x+4/3x=32/15x
售价为,x+x=2x
32/15x>2x 即进价>售价
所以亏损

10.一列火车通过一座长300米的铁桥,完全通过所用的时间为30秒,完全在桥上的时间为10秒,邱火车的车长以及它的速度。
解:
l+300=30v
300-l=10v
v=15m/s
l=150m
答:车长150m,速度15m/s。
回答者:闪兰 - 见习魔法师 二级 3-9 21:35
评价已经被关闭
回答者:于安乾 - 一派掌门 十三级 7-29 15:00

某车间每天能生产甲种零件120个,或乙种零件100个,或丙种零件200个,甲,乙,丙三种零件分别取3个,2个,1个可配成一套。现要求在30天内生产出最多的成套产品,甲,乙,丙三种零件应该各安排生产多少天?
1.某小组计划做一批“中国结”,如果每人做5个,那么比计划多了9个;如果每人做4个,那么比计划少了15个,小组成员共有多少名?他们计划做多少个“中国结”?
设小组成员有x名
5x=4x+15+9
5x-4x=15+9
2.
某中学组织初一学生进行春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满。试问
(1) 初一年级人数是多少?原计划租用45座客车多少辆?
解:租用45座客车x辆,租用60座客车(x-1)辆,
45x+15=60(x-1)
解之得:x=5 45x+15=240(人)
答:初一年级学生人数是240人,
计划租用45座客车为5辆
3.将一批会计报表输入电脑,甲单独做需20h完成,乙单独做需12h完成.现在先由甲单独做4h,剩下的部分由甲,乙合作完成,甲,乙两人合作的时间是多少?
解;设为XH
1/5+1/20X+1/12X=1
8/60X=4/5
X=6
甲,乙两人合作的时间是6H.
4.甲乙丙三个数的和是53,以知甲数和乙数的比是4:3,丙数比乙数少2,乙数是(),丙数是()
设甲数为4X.则乙为3X.丙为3X-2.
4X+3X+3X-2=53
10X=53+2
10X=55
X=5.5
3X=16.5
3X-2=16.5-2=14.5
乙为16.5,丙为14.5
5.粗蜡烛和细蜡烛的长短一样,粗蜡烛可燃5小时,细蜡烛可燃4小时,一次停电后同时点燃这两只蜡烛,来电后同时熄灭,结果发现粗蜡烛的长是细蜡烛长的4倍,求停电多长时间?
设停电x小时. 粗蜡烛每小时燃烧1/5,细蜡烛是1/4
1-1/5X=4(1-1/4)
1-1/5X=4-X
-1/5+X=4-1
4/5X=3
X=15/4
6.一个三位数,百位上的数字比十位上的数字大1,个位上的数字比十位上的数字的3倍少2,若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.
设十位数为x
则 100×(x+1)+10x+3x-2+100*(x+1)+10x+x+1=1171
化简得
424x=1272
所以:x=3
则这个三位数为437

7.一年级三个班为希望小学捐赠图书,一班娟了152册,二班捐书数是三个班级的平均数,三班捐书数是年级捐书总数的40%,三个班共捐了多少图书?
解:设⑵班捐x册
3x=152+x+3xX40%
3x=152+x+6/5x
3x-x-6/5x=152
4/5x=152
x=190…⑵班
190X3=570(本)

8.a b 两地相距31千米,甲从a地骑自行车去b地 一小时后乙骑摩托车也从a地去b地 已知甲每小时行12千米 乙每小时行28千米 问乙出发后多少小时追上甲
设乙出发x小时后追上甲,列方程
12(X+1)=28X X=0.75小时,即45分钟


应用题怎么解方程

1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?
设慢车开出a小时后与快车相遇
50a+75(a-1)=275
50a+75a-75=275
125a=350
a=2.8小时
2.一辆汽车以每小时40km的速度由甲地开往乙地,车行3h后,因遇雨,平均速度被迫每小时减少10km,结果到乙地比预计的时间晚了45min,求甲 乙两地距离.
设原定时间为a小时
45分钟=3/4小时
根据题意
40a=40×3+(40-10)×(a-3+3/4)
40a=120+30a-67.5
10a=52.5
a=5.25=5又1/4小时=21/4小时
所以甲乙距离40×21/4=210千米
3、某车间的钳工班,分两队参见植树劳动,甲队人数是乙队人数的 2倍,从甲队调16人到乙队,则甲队剩下的人数比乙队的人数的 一半少3人,求甲乙两队原来的人数?
设乙队原来有a人,甲队有2a人
那么根据题意
2a-16=1/2×(a+16)-3
4a-32=a+16-6
3a=42
a=14
那么乙队原来有14人,甲队原来有14×2=28人
现在乙队有14+16=30人,甲队有28-16=12人
4、已知某商店3月份的利润为10万元,5月份的利润为13.2万元,5月份月增长率比4月份增加了10个百分点.求3月份 的月增长率.
设四月份的利润为x
则x*(1+10%)=13.2
所以x=12
设3月份的增长率为y
则10*(1+y)=x
y=0.2=20%
所以3月份的增长率为20%
5、某校为寄宿学生安排宿舍,如果每间宿舍住7人,呢么有6人无法安排.如果每间宿舍住8人,那么有一间只住了4人,且还空着5见宿舍.求有多少人?
设有a间,总人数7a+6人
7a+6=8(a-5-1)+4
7a+6=8a-44
a=50
有人=7×50+6=356人
6、一千克的花生可以炸0.56千克花生油,那么280千克可以炸几多花生油?
按比例解决
设可以炸a千克花生油
1:0.56=280:a
a=280×0.56=156.8千克
完整算式:280÷1×0.56=156.8千克
7、一批书本分给一班每人10本,分给二班每人15本,现均分给两个班,每人几本?
设总的书有a本
一班人数=a/10
二班人数=a/15
那么均分给2班,每人a/(a/10+a/15)=10×15/(10+15)=150/25=6本
8、六一中队的植树小队去植树,如果每人植树5棵,还剩下14棵树苗,如果每人植树7棵,就少6棵树苗.这个小队有多少人?一共有多少棵树苗?
设有a人
5a+14=7a-6
2a=20
a=10
一共有10人
有树苗5×10+14=64棵
9、一桶油连油带筒重50kg,第一次倒出豆油的的一半少四千克,第二次倒出余下的四分之三多二又三分之二kg,这时连油带桶共重三分之一kg,原来桶中有多少油?
设油重a千克
那么桶重50-a千克
第一次倒出1/2a-4千克,还剩下1/2a+4千克
第二次倒出3/4×(1/2a+4)+8/3=3/8a+17/3千克,还剩下1/2a+4-3/8a-17/3=1/8a-5/3千克油
根据题意
1/8a-5/3+50-a=1/3
48=7/8a
a=384/7千克
原来有油384/7千克
10、用一捆96米的布为六年级某个班的学生做衣服,做15套用了33米布,照这样计算,这些布为哪个班做校服最合适?(1班42人,2班43人,3班45人)
设96米为a个人做
根据题意
96:a=33:15
33a=96×15
a≈43.6
所以为2班做合适,有富余,但是富余不多,为3班做就不够了
11、一个分数,如果分子加上123,分母减去163,那么新分数约分后是3/4;如果分子加上73,分母加上37,那么新分数约分后是1/2,求原分数.
设原分数分子加上123,分母减去163后为3a/4a
根据题意
(3a-123+73)/(4a+163+37)=1/2
6a-100=4a+200
2a=300
a=150
那么原分数=(3×150-123)/(4×150+163)=327/763
12、水果店运进一批水果,第一天卖了60千克,正好是第二天卖的三分之二,两天共卖全部水果的四分之一,这批水果原有多少千克(用方程解)
设水果原来有a千克
60+60/(2/3)=1/4a
60+90=1/4a
1/4a=150
a=600千克
水果原来有600千克
13、仓库有一批货物,运出五分之三后,这时仓库里又运进20吨,此时的货物正好是原来的二分之一,仓库原来有多少吨?(用方程解)
设原来有a吨
a×(1-3/5)+20=1/2a
0.4a+20=0.5a
0.1a=20
a=200
原来有200吨
14、王大叔用48米长的篱笆靠墙围一块长方形菜地.这个长方形的长和宽的比是5:2.这块菜地的面积是多少?
设长可宽分别为5a米,2a米
根据题意
5a+2a×2=48(此时用墙作为宽)
9a=48
a=16/3
长=80/3米
宽=32/3米
面积=80/3×16/3=1280/9平方米

5a×2+2a=48
12a=48
a=4
长=20米
宽=8米
面积=20×8=160平方米
15、某市移动电话有以下两种计费方法:
第一种:每月付22元月租费,然后美分钟收取通话费0.2元.
第二种:不收月租费 每分钟收取通话费0.4元.
如果每月通话80分钟 哪种计费方式便宜?如果每月通话300分钟,又是哪种计费方式便宜呢?
设每月通话a分钟
当两种收费相同时
22+0.2a=0.4a
0.2a=22
a=110
所以就是说当通话110分钟时二者收费一样
通话80分钟时,用第二种22+0.2×80=38>0.4×80=32
通过300分钟时,用第一种22+0.2×300=82<0.4×300=120
16、某家具厂有60名工人,加工某种由一个桌面和四条桌腿的桌子,工人每天美人可以加工3个桌面或6个桌腿.怎么分配加工桌面和桌腿的人数,才能使每天生产的桌面和桌腿配套?
设a个工人加工桌面,则加工桌腿的工人有你60-a人
3a=(60-a)×6/4
12a=360-6a
18a=360
a=20
20人加工桌面,60-20=40人加工桌腿
17、一架飞机在2个城市之间飞行,风速为每时24km,顺风飞行要17/6时,逆风飞要3时,求两城市距离
设距离为a千米
a/(17/6)-24=a/3+24
6a/17-a/3=48
a=2448千米
18、A.B两地相距12千米,甲从A地到B地停留30分钟后,又从B地返回A地.乙从B地到A地,在A地停留40分钟后,又从A地返回B地.已知两人同时分别从A B两地出发,经过4小时.在他们各自的返回路上相遇,如甲的速度比乙的速度每小时快1.5千米,求两人速度?
设乙的速度为a千米/小时,则甲的速度为a+1.5千米/小时
30分钟=1/2小时,40分钟=2/3小时
(4-2/3)a+(a+1.5)×(4-1/2)=12×3
10/3a+7/2a+21/4=36
41/6a=123/4
a=4.5千米/小时
甲的速度为4.5+1.5=6千米/小时
22、2007年有中小学生5千名2008年有所增加小学生增加百分之20,中学生增加百分之30这样2008年新增加1160名,小学生每人每年收500元中学生每人每年收1000元求2008年新增的1160名共收多少“借读费”?
设2007年有小学生a人,中学生5000-a人
a×20%+(5000-a)×30%=1160
0.2a+1500-0.3a=1160
0.1a=340
a=3400人
中学生有5000-3400=1600人
小学生增加3400×20%=680人
增加中学生1160-680=480人
共收借读费500×680+1000×480=820000=82万
23、商场搞促销活动,承诺大件商品可分期付款,但仅限为 2005年 五月一日 购买时先付一笔款,余下部分其他的利息(年利润为3%)在2006年五月一日 还清,某空调参与了,它的售价为8120元,若想够买,恰好两次付款此时相同,那么应付总款数多少元?
设先付a元,余下8120-a元未付
根据题意
a=(8120-a)×(1+3%)
a=8363.6-1.03a
2.03a=8363.6
a=4120元
应付总款数为4120×2=8240元


小学解方程应用题及答案

列方程解应用题
甲乙两数的和是32,甲数的3倍与乙数的5倍的和是122,求甲、乙二数各是多少?
解:设甲数为X,乙数为(32-X)。
3X+(32-X)×5=122
3X+160-5X=122
2X=38
X=19
32-X=32-19=13
答:甲数是19,乙数是13。
弟弟有钱17元,哥哥有钱25元,哥哥给弟弟多少元后,弟弟的钱是哥哥的2倍?
解:设哥哥给弟弟X元后,弟弟的钱是哥哥的2倍。
(25-X)×2=17+X
50-2X=17+X
3X=33
X=11
答:哥哥给弟弟11元后,弟弟的钱是哥哥的2倍。

有两根绳子,长的比短的长1倍,现在把每根绳子都剪掉6分米,那么长的一根就比短的一根长两倍。问:这两根绳子原来的长各是多少?
1+1=2
1+2=3
解:设原来短绳长X分米,长绳长2X分米。
(X-6)×3=2X-6
3X-18=2X-6
X=12
2X=2×12=24
答:原来短绳长12分米,长绳长24分米。
有大、中、小三筐苹果,小筐装的是中筐的一半,中筐比大筐少装16千克,大筐装的是小筐的4倍,大、中、小筐共有苹果多少千克。
解:设小筐装苹果X千克。
4X=2X+16
2X=16
X=8
8×2=16(千克)
8×4=32(千克)
答:小筐装苹果8千克,中筐装苹果16千克,大筐装苹果32千克。
30枚硬币,由2分和5分组成,共值9角9分,两种硬币各多少枚?
9角9分=99分
解:设2分硬币有X枚,5分硬币有(30-X)枚。
2X+5×(30-X)=99
2X+150-5X=99
3X=51
X=17
30-X=30-17=13
答:2分硬币有17枚,5分硬币有13枚。
搬运100只玻璃瓶,规定搬一只得搬运费3分,但打碎一只不但不得搬运费,而且要赔5分,运完后共得运费2.60元,搬运中打碎了几只?
2.60元=260分
解:设搬运中打碎了X只。
3×(100-X)-5X=260
300-3X-5X=260
8X=40
X=5
答:搬运中打碎了5只。
参加校学生运动会团体操表演的运动员排成一个正方形队列,如果要使这个正方形队列减少一行和一列,则要减少33人,参加团体操表演的运动员有多少人?
解:设团体操原来每行X人。
2X-1=33
2X=34
X=17
17×17=289(人)
答:参加团体操表演的运动员有289人。
京华小学五年级的学生采集标本,采集昆虫标本的有25人,采集植物标本的有19人,两种标本都采集的有8人,全班学生共有40人,没有采集标本的有多少人?
解:设没有采集标本的有X人。
25+19-8+X=40
36+X=40
X=4
答:没有采集标本的有4人。
一个四位数,最高位上是7,如果把这个数字调动到最后一位,其余的数字依次迁移,则这个数要减少864,求这四位数。
解:设四位数的末三位为X。
7000+X=10X+7+864
9X=6129
X=681
7000+681=7681
答:这四位数是7681。
一辆汽车从甲地出发到300千米外的乙地去,在一开始的120千米内平均速度为每小时40千米,要想使这辆汽车从甲地到乙地的平均速度为每小时50千米,剩下的路程应以什么速度行驶?
300÷50=6(小时)
120÷40=3(小时)
解:设剩下的路程每小时行X千米。
120+(6-3)X=300
120+3X=300
3X=180
X=60
答:剩下的路程每小时行60千米。


怎样列解方程解应用题

建方程其核心就是要寻找给出条件存在的数量关系,建立等量写出等式,从而求解。用方程解题要比用算术的方法简单。就像李小龙说的,化复杂为简单,划无形行为有形。可以从最简单的的入手,循序渐进,肯定会如愿以偿。
举例:
1.弟弟今年3岁,哥哥比弟弟大5岁,问哥哥几岁?
先分析题意,哥哥比弟弟大5岁,也就是说哥哥的年龄减弟弟的年龄等于5岁,还可以理解弟弟的年龄加上5岁就和哥哥的年龄相等了。可以建立2个等量关系式:
哥哥的年龄-弟弟的年龄=5
弟弟的年龄+5=哥哥的年龄
设哥哥的年龄为X岁。
X-3=5
X=8(岁)
或3+5=X
X=8(岁)


怎样列方程解应用题

1 理解题意。仔细读题,理解题意,弄懂题里的已知条件和所求问题。‍
2 分析问题。如果是分数应用题,可以画线段图帮助理解。
3 找出等量关系。这是解决此类问题的关键步骤,找出题里的等量关系,这是最重要的步骤。也是这类问题的难点。
4 列方程,解方程。把未知数设为一个字母,通常情况下设为x,根据等量关系列方程,并解方程。
5 检验。检验的过程是学生往往忽略的,但这是很重要的一步,只有检验后才可以确定答案正确与否。一般是把答案看成已知条件代人原来的题意中,算出的结果和原来的条件一致就是正确的,否则就是错误的。
6 写出答案。这是列方程解应用题的最后一步,也是不可缺少的一步。


怎样列解方程解应用题

【知识方法归纳】

1.列方程解比较容易的两步应用题

(1)列方程解应用题的步骤

①弄清题意,找出未知数并用x表示;

②找出应用题中数量间的相等关系,列方程;

③解方程;

④检查,写出答案。

(2)列方程解应用题的关键

弄清题意后,找出应用题中数量间的相等关系,恰当地设未知数,列出方程。

(3)运用一般的数量关系列方程解应用题

①列方程解加、减法应用题。如:

甲乙两人年龄的和为29岁,已知甲比乙小3岁,甲、乙两人各多少岁?

数量间的等量关系:

甲的年龄 + 乙的年龄 = 甲乙二人的年龄和

解:设甲的年龄是x岁,则乙的年龄为:(x+3)岁。

x+(x+3)=29

x+x+3=29

2x=29-3

x=26 2

x=13……甲的年龄

13+3=16(岁)……乙的年龄

答:甲的年龄是13岁,乙的年龄是16岁。

②列方程解乘、除法应用题。如:

学校图书馆买来故事书240本,相当于科技书的3倍,买来科技书多少本?

科技书的本数 3 = 故事书的本数

解:设买来科技书x本

3x=240

x=80

答:买来科技书80本。

(4)用计算公式、性质、数位及计数单位等做数量间的等量关系,列方程解应用题

①一长方形的周长是240米,长是宽的1.4倍,求长方形的面积。

( 长 + 宽 ) 2=周长

解:设宽是x米,则长是(1.4x)米。

(1.4x+x) 2=240

2.4x=240 2

x=120 2.4

x=50……长方形的宽

50 1.4=70(米) ……长方形的长

70 50=3500(平方米)

答:长方形的面积是3500平方米。

②三角形ABC中,角A是角B的2倍,角A与角B的和比角C小18°。求三个角的度数。这是一个什么三角形?

角A + 角B + 角C = 180度

解:设角B是x度,

则角A是(2x)度,角C是[(2x+x)+18]度。

2x+x+[(2x+x)+18]=180

6x+18=180

6x=180-18

x=162 6

x=27……角B的度数

27 2=54(度)……角A的度数

54+27+18=99(度)……角C的度数

答:角A是54度,角B是27度,角C是99度。

因为:角B<角A<角C,90°<角C<180°,所以这个三角形是钝角三角形。

③一个两位数,十位数字与个位数字的和是6。若以原数减去7,十位数与个位数字相同,求原数。

十位上的数字 个位上的数字

解:设原数的个位数字为x。则原数十位上的数字为:6-x;若从原数中减去7,则个位上的数字变为:10+x-7、十位上的数字变为:6-x-1。

6-x-1=10+x-7

5-x=3+x

2x=2

x=1……原数的个位数字

6-1=5……原数的十位上的数

因此,原数是:51。

2.列方程解二、三步计算的应用题

广水电影院原有座位32排,平均每排坐38人;扩建后增加到40排,可比原来多坐584人。扩建后平均每排可以坐多少人?

解:设扩建后平均每排坐x人。

x 40-38 32=584

40x-1216=584

40x=584+1216

x=1800 40

x=45

答:扩建后平均每排可以坐45人。

3.列方程解含有两个未知数的应用题

某班学生合买一种纪念品,每人出1元,多4元6角;每人出9角,就差5角。求这件纪念品多少钱?这个班共有多少名学生?

解:设这个班共有x名学生

x-4.6=9 10 x+5 10

x-4.6=0.9x+0.5

0.1x=5.1

x=51……这个班学生人数

51-4.6=46.4(元) ……纪念品的单价

答:这件纪念品46.4元;这个班共有学生51名。

4.用方程解和用算术法解应用题的比较

用方程解应用题和用算术法解应用题有什么区别,它们之间的主要区别在于思路不同。

用方程解应用题,要设未知数x,并且把未知数x与已知数放在一起,分析应用题所叙述的数量关系,再根据数量关系和方程的意义,列出方程式。

用算术法解应用题,要把已知数集中起来,加以分析,找出已知数与未知数之间的联系,列出算式表示未知数。例如:

小华身高160厘米,比小兰高15厘米。小兰的身高是多少厘米?

用方程解:

解:设小兰的身高x厘米

160-x=15

x=160-15

x=145

或:x+15=160

x=160-15

x=145

用算术法解:

160-15=145

通过比较,同学们可以看出,这两种方法的主要区别是未知数参加不参加到列式之中。列算术式,是根据题中的条件,由已知推出未知,用已知数之间的关系来表示未知数。未知数是运算的结果,已知与未知数用等号隔开。列方程式,是根据题目叙述的顺序,未知数参加列式,未知数与已知数用运算符号相连接,从整体上反映数量关系的各个方面,所以,解题方式灵活多样,适用面广,用来解答那些反叙的问题更显得方便。



【典型范例剖析】

例1 甲乙两桶油,甲桶里有油45千克,乙桶里有油24千克,问从甲桶里倒多少千克的油到乙桶里,才能使甲桶里的油的重量是乙桶里的1.5倍?

分析:根据变动以后“甲桶里油的重量是乙桶的1.5倍”,可以列出等量关系式:

现在乙桶里油的重量 1.5 = 现在甲桶里油的重量

设从甲桶里倒x千克的油到乙桶里,那么,现在甲桶里的油是(45-x)千克,现在乙桶里的油是(24+x)千克。

解:设从甲桶里倒x千克油到乙桶里。

(24+x) 1.5=45-x

36+1.5x=45-x

36+1.5x+x=45

36+2.5x=45

x=(45-36) 2.5

x=3.6

答:从甲桶里倒3.6千克的油到乙桶里,才能使甲桶里油的重量是乙桶的5倍。

例2 一位三位数,个位上的数字是5,如果把个位上的数字移到百位上,原百位上的数字移到十位上,原十位上的数字移到个位上,那么所成的新数比原数小108,原数是多少?

分析:原三位数中只知道个位数字,百位和十位上的数字都不知道。如果设原三位数中的百位数字与十位数字拼成的二位数为x,则原三位数可表示为“10x+5”,那么新数就可以表示为“5 100+x”。

解:设原三位数中的百位数字与十位数字拼成的二位数为x,可得方程:

10x+5=5 100+x+108

10x-x=500+108-5

9x=603

x=67

10 67+5=675……原三位数

答:原三位数是675。

例3 某校附小举行了两次数学竞赛,第一次及格人数是不及格人数的3倍还多4人,第二次及格人数增加5人,正好是不及格人数的6倍,问参加竞赛的有多少人?

分析:本题所求的参赛人数包括了及格的和不及格的人数,而第二次的参赛人数与第一次参赛人数有直接关系的条件,总人数又不变。所以我们设第一次参赛的不及格人数为x人,那么第一次参赛及格的人数可以用“(3x+4)”人来表示,总数是(4x+4)人,第二次参赛及格的人数是(3x+4+5)人,不及格的人数是(x-5)人,根据“第二次及格人数是不及格人数的6倍”,这一等量关系,可列方程。

解:设第一次参赛不及格的人数为x,依据题意可得方程:

3x+4+5=(x-5) 6

3x+9=6x-30

3x=39

x=13

则 4x+4=13 4+4=56……参加竞赛的人数

答:参加竞赛的有56人。



【易错题解举例】

例1 吉阳村有粮食作物84公顷,比经济作物的4倍多2公顷,经济作物有多少公顷?

错误:设经济作物有x公顷

x=(84-2)÷4

x=82÷4

x=20.5

答:经济作物有20.5公顷。

分析:这题列出的式子是一个算术式,不是方程。错误在于没有弄清方程和算术式的区别。算术式是由已知数和运算符号组成的,用来表示未知数,如本题的“x=(84-2) ÷4”;而在方程里,未知数则是参加运算的,本题中的“x”则没有参加运算。

改正:设经济作物有x公顷

4x+2=84(或4x=84-2)

4x=82

x=20.5

答:经济作物有20.5公顷。

例2 食堂运来一批煤,原计划每天烧210千克,可以烧24天。改进炉灶后这批煤可烧28天。问:改进炉灶后平均每天比原计划节约多少千克?

错误:设每天比原计划节约x千克

28x=210 24

x=180

210-180=30(千克)

答:改进炉灶后平均每天比原计划节约30千克。

分析:题中所设未知数x与方程式中的x所表示的意义不同。题目中的方程式的“x”所表示的是“改进炉灶后平均每天烧煤数”,并不表示“节约”的数。本题可以采用“间接设未知数法”或“直接设未知数法”。

改正:(1)间接设未知数

解:设改进炉灶后每天烧煤x千克,则每天比原计划节约(210-x)千克。

28x=210 24

28x=5040

x=180

210-x=210-180=30

(2)直接设未知数

解:设改进炉灶后平均每天比原计划节约x千克。

(210-x) 28=210 24

210-x=180

x=210-180

x=30

答:改进炉灶后平均每天比原计划节约30千克。

例3 王兰有64张画片,雷江又送给她12张,这时王兰和雷江的画片数相等。雷江原有画片多少张?(用方程解)

错误:设雷江原有画片x张

x-12=64

x=76

分析:雷江送12张画片给王兰后,两人的画片数才相等。也就是说,雷江减少12张,王兰增加12张之后,他们的画片数才同样多。此解法把等量关系弄错了,误认为雷江的画片减少12张后与王兰原有的画片数相等。

改正:设雷江原有画片x张。

x-12=64+12

x=76+12

x=88

答:雷江原有画片88张。



【解题技巧指点】

1. 列方程解应用题时,往往列出来的是一个算术式,误以为是方程。如:广水市吉阳村有粮食作物84公顷,比经济作物的4倍多2公顷,经济作物有多少公顷?

解:设经济作物有x公顷

x=(84-2) 4

x=82 4

x=20.5

答:经济作物有20.5公顷。

本题中的“x=(84-2) 4”是一个算术式。出现上述错误,原因在于没有弄清方程式和算术式的区别。算术式是由已知数和运算符号组成的,用来表示未知数;而在方程里,未知数则是参加运算的。本题的方程应该列为:

4x+2=84或4x=84-2或84-4x=2

2.按照题意,恰当地设未知数。如:第一教工食堂运来一批煤,原计划每天烧煤210千克,可烧24天,改进炉灶后这批煤可烧28天。问:改进炉灶后平均每天比原计划节约多少千克?

设未知数时一般有两种方法:一种是直接设未知数为x,题目中问什么,就设什么为x;另一种是间接设未知数为x,再通过这个量与所求问题的关系,求出应用题中要求的未知量。

如果按直接设未知数为x的方法解答,那么本题中所列方程应该是:

解:设每天比原计划节约x千克煤

(210-x) 28=210 24

210-x=180

x=210-180

x=30

如果采用间接设未知数x的方法:

解:设改进炉灶后每天烧煤x千克,则每天比原计划节约(210-x)千克。

28x=210 24

x=180

210-180=30(千克)

答:每天比原计划节约30千克。

老了不死;参考资料:根据网络搜集


列方程解应用题的几点技巧

首先是审题,确定未知数。
审题,理解题意。就是全面分析已知数与已知数、已知数与未知数的关系。特别要把牵涉到的一些概念术语弄清,如同向、相向、增加到、增加了等,并确立未知数。即用x表示所求的数量或有关的未知量。在小学阶段同学们遇到的应用题并不十分复杂,一般只需要直接把要求的数量设为未知数,如:“学校图书馆里科技书的本数比文艺书的2倍多47本,科技书有495本,文艺书有多少本?”在这道题目中只有“文艺书的数量”不知道,所以只要设“文艺书的数量”为未知数x就可以了。
寻找等量关系,列出方程是关键。
“含有未知数的等式称为方程”,因而
“等式”是列方程必不可少的条件。所以寻找等量关系是解题的关键。如上题中“科技书得本数比文艺书的2倍多47本”这是理解本题题目意思的关键。仔细审题发现“文艺书本数的2倍加上47本就是科技书的本数”故本题的等量关系为:文艺书本数的2倍+47=科技书的本数。上题中的方程可以列为:“2x+47=495”
解方程,求出未知数得值。
解方程时应当注意把等号对齐。如:
2x+47=495
2x+47-47=495-47←应将“2x”看做一个整体。
2x=448
2x÷2=448÷2
x=224
检验也是列方程解应用题中必不可少的。
检验并写出答案.检验时,一是要将所求得的未知数的值代入原方程,检验方程的解是否正确;二是检查所求得的未知数的值是否符合题意,不符合题意的要舍去,保留符合题意的解.
1)将求得的方程的解代入原方程中检验。如果左右两边相等,说明方程解正确了。如上题的检验过程为:
检验:把x=224代入原方程。
左边=2×224+47右边=495
=495
因为左边=右边,所以x=224是方程2x+47=495的解。
2)文艺书本数的2倍+47=科技书的本数
将224代入以上等式,等式成立。故所求得的未知数的值符合题意。
总之,以上几点技巧都是列方程解应用题的关键环节的技巧,只要大家利用这些技巧加强练习,就一定能闯过列方程解应用题这道关。在千变万化的应用问题中,我们若能抓住以上几点,以不变应万变,则问题就可迎刃而解。


解方程应用题

五年级解方程应用题 甲乙两数的和是32,甲数的3倍与乙数的5倍的和是122,求甲、乙二数各是多少?解:设甲数为X,乙数为(32-X) 3X+(32-X)×5=122 3X+160-5X=122 2X=38 X=19 32-X=32-19=13 答:甲数是19,乙数是13。弟弟有钱17元,哥哥有钱25元,哥哥给弟弟多少元后,弟弟的钱是哥哥的2倍?解:设哥哥给弟弟X元后,弟弟的钱是哥哥的2倍。(25-X)×2=17+X 50-2X=17+X 3X=33 X=11 答:哥哥给弟弟11元后,弟弟的钱是哥哥的2倍。 有两根绳子,长的比短的长1倍,现在把每根绳子都剪掉6分米,那么长的一根就比短的一根长两倍。问:这两根绳子原来的长各是多少? 1+1=2 1+2=3 解:设原来短绳长X分米,长绳长2X分米。(X-6)×3=2X-6 3X-18=2X-6 X=12 2X=2×12=24 答:原来短绳长12分米,长绳长24分米。有大、中、小三筐苹果,小筐装的是中筐的一半,中筐比大筐少装16千克,大筐装的是小筐的4倍,大、中、小筐共有苹果多少千克。解:设小筐装苹果X千克。 4X=2X+16 2X=16 X=8 8×2=16(千克) 8×4=32(千克)答:小筐装苹果8千克,中筐装苹果16千克,大筐装苹果32千克。 30枚硬币,由2分和5分组成,共值9角9分,两种硬币各多少枚? 9角9分=99分解:设2分硬币有X枚,5分硬币有(30-X)枚。 2X+5×(30-X)=99 2X+150-5X=99 3X=51 X=17 30-X=30-17=13 答:2分硬币有17枚,5分硬币有13枚。搬运100只玻璃瓶,规定搬一只得搬运费3分,但打碎一只不但不得搬运费,而且要赔5分,运完后共得运费2.60元,搬运中打碎了几只? 2.60元=260分解:设搬运中打碎了X只。 3×(100-X)-5X=260 300-3X-5X=260 8X=40 X=5 答:搬运中打碎了5只。京华小学五年级的学生采集标本,采集昆虫标本的有25人,采集植物标本的有19人,两种标本都采集的有8人,全班学生共有40人,没有采集标本的有多少人?解:设没有采集标本的有X人。 25+19-8+X=40 36+X=40 X=4 答:没有采集标本的有4人。一个四位数,最高位上是7,如果把这个数字调动到最后一位,其余的数字依次迁移,则这个数要减少864,求这四位数。解:设四位数的末三位为X。 7000+X=10X+7+864 9X=6129 X=681 7000+681=7681 答:这四位数是7681。一辆汽车从甲地出发到300千米外的乙地去,在一开始的120千米内平均速度为每小时40千米,要想使这辆汽车从甲地到乙地的平均速度为每小时50千米,剩下的路程应以什么速度行驶? 300÷50=6(小时) 120÷40=3(小时)解:设剩下的路程每小时行X千米。 120+(6-3)X=300 120+3X=300 3X=180 X=60 答:剩下的路程每小时行60千米


上一篇:石油七姐妹

下一篇:重生之兽人凶猛